Quadratic Formula Example

Solving a quadratic equation
Here is my solution to the quadratic equation $m^{2}-6 m-7=0$.
We will use the quadratic formula which is used to solve quadratic equations in the generic form $a x^{2}+b x+c=0$. Some old guy, long ago, solved this generic equation for x and got $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. This is what we call the quadratic formula.

So what we need to do to solve $m^{2}-6 m-7=0$, is to determine what the coefficients are, or what stands in place for a, b, and c as seen in the generic form $a x^{2}+b x+c=0$. Notice we could think of our equation as $\underline{1 m^{2}}+\underline{-6 m}+\underline{-7}=0$. I've written it with "plus" signs because the generic form has no minus signs and I have underlined each term to bring them out. So we see that a is 1 , b is -6 , and c is -7 .

We will stick these values into the quadratic formula and out will come the solutions to our equation, or the values of x that make the equation true. How lovely is that!? I do it below. Notice how carefully we have to watch the order of operations.

So this means that x could be two different values. It could be " 6 plus 8 " divided by 2 , and it could be " 6 minus 8 " divided by 2 . So that gives us $14 / 2$ or 7 as our first answer and ${ }^{-2} / 2$ as our second answer. Notice both values, when substituted into the original equation for x, would make the equation true. Try it out to convince yourself that we truly did solve the equation.

