Rational Functions: Vertical asymptotes

NAME:
This worksheet is designed to help you understand why and where vertical asymptotes exist on the graphs of rational functions.

Recall a rational function is a function that can be written as a fraction whose numerator (top) and denominator (bottom) are both polynomial functions. You should recognize all the functions on this worksheet are indeed rational functions.

Remember a fraction is said to be "undefined" if the denominator is zero.

1. Let's start with the function $g(x)=\frac{2 x^{2}+3}{x-2}$. Algebraically find $g(2)$.
2. Using your grapher, verify that the graph of $g(x)=\frac{2 x^{2}+3}{x-2}$ is shown below. Notice the vertical line at $x=2$. This is called a vertical asymptote. Vertical asymptotes occur at x values where the rational function is undefined.

3. Where do you think the vertical asymptotes would occur on the graph of $f(x)=\frac{4 x+1}{(x+1)(x-3)}$?
4. Graph $f(x)=\frac{4 x+1}{(x+1)(x-3)}$ to see if you were correct. Mark and label tick marks on the x-axis to make your graph more accurate. Draw the vertical asymptotes as dashed lines.
(Note: When you enter this into your calculator, you need to make sure you have parentheses around the entire top and entire bottom; it should look like $y_{1}=(4 x+1) /((x+1)(x-3))$. Notice the second set of parentheses on the bottom.)
5. Where do you think the vertical asymptotes would occur on the graph of $f(x)=\frac{x-4}{x^{2}+x-6}$? (HINT: Solve $x^{2}+x-6=0$ to see where the denominator is zero.)
6. Graph $f(x)=\frac{x-4}{x^{2}+x-6}$ to see if you were correct. Mark and label tick marks on the x-axis to make your graph more accurate. (You might need to zoom in to see the part of the graph that is right of 2. I used the ZOOMIN feature.) Draw the vertical asymptotes as dashed lines.

7. Where do you think the vertical asymptotes would occur on the graph of $f(x)=\frac{2 x^{2}-2 x}{x-1}$? (Solve "bottom $=0$ " to see where the vertical asymptote should lie.)
8. Graph $f(x)=\frac{2 x^{2}-2 x}{x-1}$ to see if you were correct. You will notice there is not a vertical asymptote at $x=1$. Why do you think that is? Simplify $\frac{2 x^{2}-2 x}{x-1}$ to find out what's going on. (HINT: Factor the top. What can be pulled out using the distribution property?)
9. When we factor the top of $f(x)=\frac{2 x^{2}-2 x}{x-1}$, we see that we can cancel and this function reduces to simply $y=2 x$. This means the function $f(x)=\frac{2 x^{2}-2 x}{x-1}$ is equivalent to the function $y=2 x$ except where x is 1 . Why? What happens to $f(x)$ when x is 1 ? Or rather, what is the $f(x)$ value that goes with the x value of 1 ?

So the graphs of $f(x)=\frac{2 x^{2}-2 x}{x-1}$ and $y=2 x$ are identical except where x is 1 .

When x is 1 , the graph of $f(x)=\frac{2 x^{2}-2 x}{x-1}$ has a hole.
The graph of $f(x)$ really looks like this.

The main point of this worksheet is that vertical asymptotes of rational functions are found at the x values that make the bottom zero (where the rational function is undefined). The exception to this occurs when there are common factors on the top and bottom (like $(x-1)$ in number 8.) In these instances, there is a hole at the x values that make the bottom zero.

