Confidence Intervals for Means and Proportions

A. Proportions: Let's say we took a SRS of 150 people ($n=150$) and found 67% of the sample support President Bush ($\hat{p}=.67$). We want to form an interval of values, in which we are 95% confident that the true percentage of Bush supporters (in the population) lies.

Must check: 1. Is our sample an SRS?

$$
\text { 2. Is } n \hat{p}>5 \text { and } n(1-\hat{p})>5 \text { ? }
$$

Then we can find the $95 \% \mathrm{CI}$: The formula is $\hat{p} \pm 1.96 * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$. This gives us $.67 \pm 1.96 * .038=.67 \pm .07$. So the 95% CI is from 60% to 74%. Our statement would be "we are 95% confident that the true percentage of Bush supporters is between 60% and 74%."
B. Means: Let's say we conducted an SRS of $150(n=150)$ people asking them how many drinks they had the previous Friday night. Assume the mean for our sample is 4 $(\bar{x}=4)$, with a standard deviation of $1.4(s=1.4)$.

Must check: 1. Is our sample an SRS?
2. Is $n>30$?

Then we can find the 95% CI: The formula is $\bar{x} \pm \frac{1.96 * s}{\sqrt{n}}$. This gives us $4 \pm \frac{1.96 * 1.4}{\sqrt{150}}=4 \pm .22$. So the $95 \% \mathrm{CI}$ is from 3.78 to 4.22 . Our statement would be "we are 95% confident that the mean number of drinks (in our population) on the previous Friday night was between 3.78 and 4.22."

