Trigonometry
NAME:
Circular Functions: Sine, Cosine, and Tangent

1. Consider the points $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$, and x_{4}. For each x_{i}, measure the length of the arc from $(1,0)$ to the point. The units are O'Leary-Johnsons. Use your twist-tie and the ruler below the graph to do this.

Notice x_{3} and x_{4} are too far from (1,0) to measure this way. So measure them from $(1,0)$ in a clockwise direction and label these x values as negative. Record the arc lengths in the table below. Then continue with the rest of the ditto.

$\mathbf{x}_{\mathbf{i}}$	x_{1}	x_{2}	x_{3}	x_{4}
Arc length as measured from (1,0)				

2. Make sure your calculator is in radian mode. Use your calculator and the arc lengths from above to find the sine, cosine and tangent of these measurements. Use the table to record your calculations.
3. Notice we are investigating the circular functions sine, cosine and tangent. Compare the values gotten above with the definitions of the sine, cosine and tangent of these lengths using the point's coordinates as discussed in class. Then compare the values gotten the two separate ways.

Arc length X_{i}		Use your calculator to find the trigonometric values	Use the definitions of the circular functions and the point's coordinates
$\mathrm{x}_{1}=$	$\sin \mathrm{X}_{1}$		
	$\cos \mathrm{x}_{1}$		
	$\tan \mathrm{x}_{1}$		
$\mathrm{x}_{2}=$	$\sin \mathrm{X}_{2}$		
	$\cos \mathrm{X}_{2}$		
	$\tan \mathrm{X}_{2}$		
$\mathrm{x}_{3}=$	$\sin \mathrm{X}_{3}$		
	$\cos \mathrm{x}_{3}$		
	$\tan \mathrm{x}_{3}$		
$\mathrm{X}_{4}=$	$\sin \mathrm{X}_{4}$		
	$\cos \mathrm{X}_{4}$		
	$\tan \mathrm{X}_{4}$		

