Math 128 NAME: Inverses of Trigonometric Functions Cosine, Sine, and Tangent

1. Reflect the graph of $y = \sin x$ about the line y = x. You'll recall this creates the inverse of the function $y = \sin x$, which "undoes" $y = \sin x$. We denote this inverse relationship by $y = \sin^{-1}x$.

2. You'll notice that the reflection is not a function. It has more than one y value for many of the x values. How could we restrict the domain of $y = \sin x$ so that its inverse was a function? There are many correct answers here. Select an interval of x values for the original function so that its inverse is a function.

3. The usual domain restriction for $y = \sin x$ is $-\frac{p}{2} \le x \le \frac{p}{2}$. Concentrate only on this

$\sin^{-1}(.7) =$	$\sin\left(\boldsymbol{p}/4\right) =$
$\sin^{-1}(0) =$	sin(0) =
$\sin^{-1}(1) =$	$\sin(\mathbf{p}/2) =$

portion of the graphs to complete this table.

4. Reflect the graph of $y = \cos x$ about the line y = x. This creates the inverse of the function $y = \cos x$, denoted by $y = \cos^{-1}x$. Just as before the inverse is not a function unless the domain of $y = \cos x$ is restricted. We usually restrict the domain of $y = \cos x$ to $0 \le x \le p$. Cross out the remainder of the graph and only reflect the restricted domain part.

5. The usual domain restriction for $y = \cos x$ is $0 \le x \le p$. We will only need this portion of the graphs to complete this table.

$\cos^{-1}(.7) =$	$\cos(p/4) =$
$\cos^{-1}(0) =$	$\cos\left(\mathbf{p}/2\right) =$
$\cos^{-1}(5) =$	$\cos\left(2\boldsymbol{p}/3\right) =$

6. Notice if $f(x) = \cos x$ and $g(x) = \cos^{-1}x$ are inverses, then f(g(x)) = x or rather, $\cos(\cos^{-1}(x)) = x$ or alternatively $\cos^{-1}(\cos(x)) = x$. Similar things can be said of $y = \sin x$ and $y = \sin^{-1}x$. Use the results of numbers three and five above to verify these equations.

7. Consider this graph of $y = \tan x$ with the restricted domain of $-\frac{p}{2} < x < \frac{p}{2}$. (Notice the values -p/2 and p/2 are not included as the function is undefined at these values.) Reflect it over the y = x line. Only reflect that part in the restricted domain.

8. Using the wording of asymptotes, describe the graph of $y = \tan^{-1}x$.

Original Trig Fnc	Original Trig Fnc's	Original Trig Fnc's	Inverse	Inverse's Domain	Inverse's Range
	Domain	Range			
$y = \sin x$	$-\frac{\mathbf{p}}{2} \le x \le \frac{\mathbf{p}}{2}$		$y = \sin^{-1}x$		
$y = \cos x$	$0 \le x \le \boldsymbol{p}$		$y = \cos^{-1}x$		
y = tan x	$-\frac{\mathbf{p}}{2} < x < \frac{\mathbf{p}}{2}$		$y = tan^{-1}x$		

9. Use your graphs with the appropriate restricted domains to fill in the following table.

10. What is true of the relationship between the domain and range of a trig function and that of its inverse?