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Calculus I  
Class notes 
The Mean Value Theorem (section 4.2) 

Our main topic is, of course, the Mean Value Theorem (MVT). We will get to that once we 
explore another that is used to justify the MVT called Rolle’s Theorem.  

Theorem 4.3: Rolle’s Theorem: 
Let  f  be a continuous function on a closed interval 
[a, b]  and differentiable on  (a, b)  with  f (a) = f (b). 
Then there is at least one point  x = c  in  (a, b)  such  
that  ( ) 0f c  .  

expl 1: Determine if Rolle’s Theorem applies to the following functions on the given intervals. If 
so, find the point(s) guaranteed to exist.  

a.) 
2

3( ) 1 , [ 1,1]f x x    

 

 

 

 

 

 

b.) 3 2( ) 5 3, [ 1, 3]g x x x x      

 

 

 

 

 

 

 

 

 This will cement the relationship between 
average rate of change and instantaneous rate of 

change. It is used in the proofs of other theorems.  

This is named after Michel 
Rolle, a French mathematician. 

He proved the case for 
polynomial functions in 1691.  

Graph on the window 
[–3, 3] x [–3, 3].  

Recall, a function is not 
differentiable at  a  if   

1)  f  is not continuous at  a,  
2)  f  has a corner at  a, or 

3)  f  has a vertical tangent at  a. 

We only want 
values  x = c  
in the interval  

(a, b). 
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Notice the left-hand side of this equation is the 
average rate of change for the function in this 
interval. The MVT guarantees that there is some 
interior point such that its instantaneous rate of 
change is equal to it.  
 
For the example function shown here, you can 
imagine the slopes of the tangent lines at any interior 
point. Most would not match the slope of the secant 
line from  a  to  b. However, the MVT tells us that 
there must be at least one value in there whose slope 
does match. (It has been found and is shown  
at  x = c.)  
 

 
expl 2: Determine if the MVT applies to the function  2( ) 7f x x    on the interval  [–1, 2]. If 

so, find the point(s) that are guaranteed to exist by the MVT.  

 

 

 

 

 

 

 

 

 

 

Find the equation of the tangent line at your value of  c  and use your grapher to verify.  

To find  c, solve 

 
( ) ( )f b f a

b a




 = ( )f c .  
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expl 3: Avalanche forecasters measure the temperature gradient  
dT

dh
, the rate at which the 

temperature in a snowpack  T  changes with respect to its depth  h. A large temperature gradient 
may lead to a weak layer in the snowpack, possibly causing an avalanche. If this temperature 
gradient exceeds 10 °C/m anywhere in the snowpack, a weak layer is indicated and the risk of an 
avalanche increases. Assume the temperature function is continuous and differentiable.  
a.) An avalanche researcher takes two temperature measurements. At the surface (h = 0), the 
temperature is –16 °C. At a depth of  1.1 meters, the temperature is  –2 °C. Using the MVT, what 
can be said about the temperature gradient in the interval (0, 1.1) and the risk of an avalanche?  

 

 

 

 

 

 

 

 

b.) At another location, temperature readings are taken. At the surface (h = 0), the temperature is 
–12 °C. At a depth of  1.4 meters, the temperature is  –1 °C. Using the MVT, what can be said 
about the temperature gradient in the interval (0, 1.4) and the risk of an avalanche?  

 

 

 

 

 

 

 

 

The function  
T(h)  is the 
temperature 
at depth  h.  

A result that is not more than  
10 °C/m  does not necessarily 

mean there is no risk. We simply 
do not have evidence for it.  
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Consequences of the Mean Value Theorem: 
These observations will help as we study antiderivatives later in the chapter.  

First, let’s look at a constant function. Draw 
any you like to the right. Label it in function 
notation.  
 

Find the value of  
( ) ( )f b f a

b a




  for any two 

values  a  and  b. Do you see why you would 
always get the same value?  
 

 

 

Sidebar: Logic: The Converse: 
A conditional statement can be thought of as, “If  p, then  q.” Its converse is “If  q, then  p.”  

If we know a statement is true, we cannot say if the statement’s converse is also true. It may be 
true but it may not be true. (Earlier, we saw how a statement’s contrapositive is always true if the 
statement is true. Here, we dabble a bit more in logic.) 

We can see this by considering an example. Assume the statement “If it rains, then I’ll drive you 
home.” is true. Is the converse “If I drive you home, then it rained.” also true?  

The answer is no; I could be driving you home for another reason.  

 

Back to Calculus:  
So, as seen at the top of this page, we know that if a function is a constant function, that is,   

f (x) = C  for some real number  C, then    0f x   for all  x. This statement’s converse also 

happens to be true. The book lays this bad boy out thusly… 

 

“If and Only If” Language: 

We could state this as “A function  f  is differentiable and    0f x   for all points of an open 

interval if and only if  f  is a constant function on that interval.” One condition implies the other.  

The statement “p  if and only if  q” is the same as “If  p, then  q.” and, at the same time,   
“If  q, then  p.” This is called a biconditional statement.  

Do you recall learning 

that    0
d

c
dx

 ?  
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The MVT helps prove Theorem 4.5. A direct consequence of Theorem 4.5 is below. Its converse 
and contrapositive (used in the next example) are also true. Proofs are given in the book.  

 

This one is a good one and helps enormously when we work with antiderivatives which, as the 
name sort of implies, helps us reverse what the derivative does. For now, we will work this 
example. 

expl 4: Without evaluating derivatives, determine which of the 
functions listed to the right have the same derivative as  

10( )f x x . 
 

10

10

10

10

( ) 2

( ) 5

( ) ln 2

( ) 5

g x x

h x x

p x x

k x x x



 

 

 

 

 

 

 

 

 

 

 

 

“Differing by a 
constant” means that if 
you subtract them, you 
would get a constant.   

You could check 
yourself by using 

the derivative rules.  


