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Calculus I  
Class notes 
Linear Approximation and Differentials (section 4.6) 

Imagine the graph of a generic function and the tangent line at 
the point  P. Do you imagine something like the picture to the 
right?  
 
Now, in that beautiful imagination of yours, zoom in on that 
point. You can also zoom in your actual head. If you do it fast 
enough, you get a rush. Don’t do it too fast or you’ll hit your 
head.  

 

 

Zoomed in, it looks like this. Zoom in even further.  
Go ahead, do it with your head; I know you want to.  
 

 
 

Seriously, why not do it? No one is watching, or at least 
filming you, probably. Put your pencil down first. 
 
OK, here is what it looks like when you zoom in.  
 
Do you notice that the tangent line starts to coincide with the 
graph as we zoom in?   

 

Now, here’s the cool thing about this. If we need to approximate the  f (x)  value for an  x-value 
near this point  P, we could, in fact, use the tangent line.  

 

Do you remember the formula for the equation of the  
tangent line of  f (x)  at  x = a? Write it here and  
solve for  y. 

 

 

 

We use the tangent line to 
a curve to approximate a 
nearby function value.  

If our  x-value was not 
near  P, the tangent line 
would not give a good 

approximation. 
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Of course, to do this, ( )f a  must exist.  

expl 1a: Find the linear approximation to the function below at the given point  a.  
3( ) 5 3 ; 2f x x x a     

 

 

 

 

 

 

 

More Exploration (Errors):  
Use your function  L(x)  to approximate  f (x)  at  x = 2.1. Then use the original function to find 
the exact value of  f (2.1). How did your approximation do?    

 

 

 

 

 

Graph the 3( ) 5 3f x x x    and the tangent 

line at  a = 2. Again, the tangent line is just  
the  L(x)  we found. Zoom in and you’ll see 
why we got an underestimate. (You should  
see that the tangent line is below  f (x).)  

We introduce a new 
function, L(x). It 

approximates  f (x)  
for  x-values near  a.  

We are asked 
for  L(x).  

We can subtract   
f (2.1) –  L(2.1)   

to find the error.  
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More Exploration (Values far from  a):  
Use your function  L(x)  to approximate  f (x)  at  x = 4. Use the original function to find the 
exact value of  f (4). How did your approximation do?    

 

 

 

 

 

Concavity:  
Consider these two functions. One is 
concave up and the other concave 
down at  a. Notice how the tangent 
line for the concave up graph (left) 
would always underestimate  f (x). 
The opposite happens on the concave 
down graph (right). Crazy!  
 

 
 

Recall, from a previous section, concavity and ( )f x   are related.  

It turns out that a large value of  ( )f a   means that the graphs of  f (x)  and  L(x)  diverge 

quickly (resulting in large errors). However, a small value of  ( )f a   means that  f (x)  and  L(x)  

diverge less quickly (resulting in smaller errors). 

 

Definition: Curvature: Curvature  
is the degree of concavity.  

expl 1b: Once again, consider  3( ) 5 3f x x x     

and its linear approximation  ( ) 7 13L x x    when  a = 2.  

Find (2)f  . Does it seem large? Small? How can you tell?  

 

 

You do not need to 
subtract to see that this 
approximation did not 

work. Return to your graph 
and extend  L(x)  to  x = 4. 

When  ( )f a   is large, we call that 

large curvature. When  ( )f a   is 

small, we call that small curvature. 
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More Exploration (Second Derivatives and Errors): 
expl 1c: Redo the procedure for  a = 0. That is, find  f (0)  and  (0)f  . Use them to form the 

function  L(x)  and approximate  f (x)  at  x = 0.1.  

 

 

 

 

How did your approximation do?    

Complete the table so we can 
explore the connection between 
the error and the absolute value 
of the second derivative.  
 

a f (a + 0.1) L(a + 0.1) error f (a)  
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1.761 1.7 0.061 12 

0 
 

    

 

 
We could do this for various values of  a  but it would be tedious. 
Alternatively, let’s explore the graph of ( ) 6f x x  . You could 

probably produce it from memory and your knowledge of 
transformations. Draw it now.  

 

 

Do you see how the value of ( ) 6f x x   gets larger as we get further from  x = 0? That 

indicates a larger curvature on these parts of the graph of 3( ) 5 3f x x x    which implies our 

approximations will be worse as we get further from zero.   

 

Give yourself a graph of the function 
and both tangent lines using the 
window [-2.5, 2.5] x [-2.5, 10].  

You will see that the tangent line at  
 a = 0  coincides with  f (x)  longer than 
in other places. Also of note is the fact 
that the tangent line is above  f (x)  
when  x < 0  and below it when  x > 0. 

 

Note that the graph has a point of inflection at  x = 0. 
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Estimating Change with Linear Approximations:  
Let’s revisit this linear approximation and use some familiar notation to denote what we’ve got.   

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

f x L x f a f a x a

f x f a f a x a

   
  

  

 

 

This means that the change in  y  (function values) is approximated by the corresponding change 
in  x-values magnified or diminished by a factor of  ( )f a . Here, the book makes this official 

and gives us a picture.  

 

So, what good is this? It leads to 
an important discussion of 
differentials. But it will also give 
us insight for some interesting 
applications like our next 
example.  
 
expl 2: We are told that the 
atmospheric pressure at an 
altitude of  z  kilometers is given 

by 10( ) 1000
z

P z e


 . 
Approximate the change in the 

atmospheric pressure when the altitude increases from  z = 2 km  to  z = 2.01 km. 
Do not forget units.  

 

 

 

 

Subtract f (a) from both sides and we 
see the left side as y . Likewise, do 

you see x ? Rewrite our equation 
with this delta notation.   

Look for  x , y , 

and ( )f a x  .  

Use the formula 
with a change 
in variables.   



6 
 

Differentials:  
We have seen these before. We simply delve deeper here.  

Consider our function  f  that is differentiable on an interval containing  x = a. If the   
x-coordinate changes from  a  to  a + x , then the corresponding change in  f  is exactly 

   y f a x f a     .  

Give yourself a quick picture of a generic 
function with the  x-values  a  and  a + x  
along with their function values.  
 

 

On the other hand, if we use the linear approximation, ( ) ( ) ( )( )L x f a f a x a   , we would get 

   L L a x L a     . Complete this to see what this is equal to.  

 

 

 

 

Add the tangent line at  a  to your picture above. Recall, this is the line  L(x).  

Definition: Differential, dx: This is equal to x . 

Definition: Differential, dy: This is the change in the linear  

approximation  dy =  L f a x   . We now can see that dy y  .  

So, we can now write   dy f a dx  for the point  x = a.  

For the variable point  x, we would have  dy f x dx , or rather,  dy
f x

dx
 . 

expl 3: Express the relationship between a small change in  x  and the corresponding change in  y  

in the form   dy f x dx . 

3
1( )f x

x
  

Recall, L  
approximates  y .   

Recall, this alternative 
notation for the 

derivative was given 
in an earlier section.    


