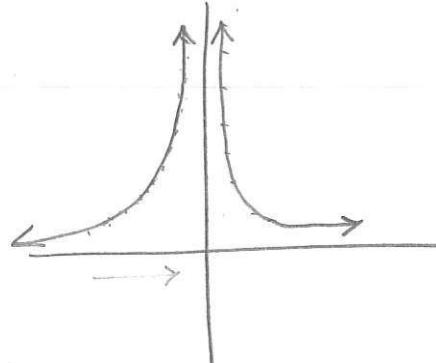


How do we show if a graph soars off toward infinity as x approaches some number like 0? How would that look?

To infinity and beyond! Consider the function $y = \frac{1}{x^2}$. Graph it on the Standard Window and copy it here.



As we approach 0 from the left, what does the function (y-values) go toward?

∞

As we approach 0 from the right, what does the function (y-values) go toward?

∞ \circ \circ

We are talking about

$$\lim_{x \rightarrow 0^-} \frac{1}{x^2} \text{ and } \lim_{x \rightarrow 0^+} \frac{1}{x^2}.$$

Again, recall that we define $\lim_{x \rightarrow 0} \frac{1}{x^2}$ from the values of $\lim_{x \rightarrow 0^-} \frac{1}{x^2}$ and $\lim_{x \rightarrow 0^+} \frac{1}{x^2}$. What would you say is the value of $\lim_{x \rightarrow 0} \frac{1}{x^2}$?

$$\lim_{x \rightarrow 0} \frac{1}{x^2} = \infty$$

Lovely. Just lovely. Now, we will certainly write this as being "equal to infinity". However, let's be clear. A limit is, strictly speaking, a number and so is *not* really equal to infinity. This limit does not, in fact, exist but we will write such limits as infinity or negative infinity.

Soon, we will also consider stuff like $\lim_{x \rightarrow \infty} \frac{1}{x^2}$.

We'll need to keep those ideas separate.

Section 2.5

Definition: Infinite Limits:

Suppose f is defined for all x near a . If $f(x)$ grows arbitrarily large for all x sufficiently close (but *not* equal) to a , we write $\lim_{x \rightarrow a} f(x) = \infty$. We pronounce this as "the limit of f , as x approaches a , is infinity".

If $f(x)$ is negative and grows arbitrarily large in magnitude for all x sufficiently close (but *not* equal) to a , we write $\lim_{x \rightarrow a} f(x) = -\infty$.

We pronounce this as "the limit of f , as x approaches a , is negative infinity".

Recall that both $\lim_{x \rightarrow a^-} f(x)$ and $\lim_{x \rightarrow a^+} f(x)$ have to agree.

The Limit is Infinity but Does Not Exist?

Yes, technically the limit does *not* exist but this gives us a handy notation to denote a graph that soars up or down towards infinity or its negative. This limit is said to *not* exist. We will still write this limit as equal to infinity or its negative if $f(x)$ approaches it as we approach a from the right *and* the left.

If the right-sided limit does *not* match the left-sided limit, we will say the limit does *not* exist at all. We often use "d.n.e." as an abbreviation.

expl 1: Notice the vertical asymptotes in this function's graph. Find the following limits. Some are left-sided, some are right-sided, and some are neither. Say "dne" if the limit does *not* exist; use ∞ or $-\infty$ when appropriate.

a.) $\lim_{x \rightarrow 2^-} g(x) = \infty$

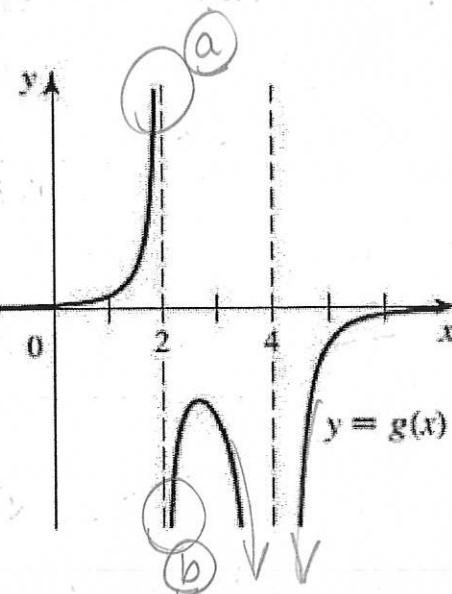
d.) $\lim_{x \rightarrow 4^+} g(x) = -\infty$

b.) $\lim_{x \rightarrow 2^+} g(x) = -\infty$

e.) $\lim_{x \rightarrow 4^+} g(x) = -\infty$

c.) $\lim_{x \rightarrow 2} g(x) = \underline{\text{dne}}$

f.) $\lim_{x \rightarrow 4} g(x) = -\infty$

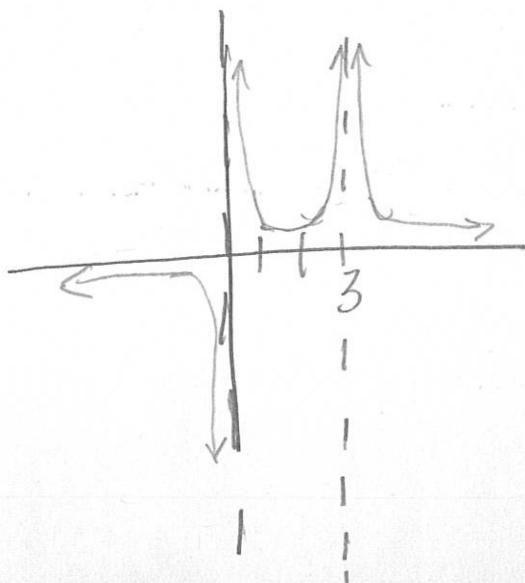


Recall: Definition: Vertical Asymptotes:

You will be familiar with these through rational functions. We define it here using our new concept of limit.

If $\lim_{x \rightarrow a^-} f(x) = \pm\infty$, $\lim_{x \rightarrow a^+} f(x) = \pm\infty$, or $\lim_{x \rightarrow a} f(x) = \pm\infty$, then the line $x = a$ is a vertical asymptote of $f(x)$.

expl 2: Draw a graph of a function such that $\lim_{x \rightarrow 3} f(x) = \infty$ and $\lim_{x \rightarrow 0^+} f(x) = \infty$ but $\lim_{x \rightarrow 0^-} f(x) = -\infty$.



Finding Limits Algebraically (Analytically):

expl 3: Find these limits without consulting a graph.

Picture
 $z = 3.1$

a.) $\lim_{z \rightarrow 3^+} \frac{(z-1)(z-2)}{(z-3)}$

$$\lim_{z \rightarrow 3^+} \frac{(z-1)(z-2)}{(z-3)} = +\infty$$

Picture
 $z = 2.9$

b.) $\lim_{z \rightarrow 3^-} \frac{(z-1)(z-2)}{(z-3)}$

$$\lim_{z \rightarrow 3^-} \frac{(z-1)(z-2)}{(z-3)} = -\infty$$

c.) $\lim_{z \rightarrow 3} \frac{(z-1)(z-2)}{(z-3)}$ due because

$$\lim_{z \rightarrow 3^+} \frac{(z-1)(z-2)}{(z-3)} \neq \lim_{z \rightarrow 3^-} \frac{(z-1)(z-2)}{(z-3)}$$

Division and Infinity:

When we have a fraction whose top is way bigger than its bottom, the quotient is a big number.

See this with a fraction like $\frac{5}{0.03}$. As the bottom gets smaller and smaller, the quotient gets

bigger and bigger. Look at $\frac{5}{0.003}$, $\frac{5}{0.0003}$, $\frac{5}{0.00003}$, ... $\rightarrow +\infty$

If we let the bottom approach 0, the fraction will approach positive (or negative) infinity. You want to be on the lookout for fractions whose bottom approaches 0 while its top does not.

Direct substitution gets us 0 on bottom, no joy.

Without using a specific value, imagine a z -value that is slightly more than 3.

For each factor, would it be positive or negative?

Part b, do the same for a number that you imagine slightly less than 3...

direct substitution
doesn't work.

expl 4: Find these limits but you'll need your factoring skills.

$$a.) \lim_{x \rightarrow 0} \frac{x-3}{x^4 - 9x^2} = \lim_{x \rightarrow 0} \frac{1(x-3)}{x^2(x^2-9)} = \lim_{x \rightarrow 0} \frac{1(x-3)}{x^2(x-3)(x+3)} = \lim_{x \rightarrow 0} \frac{1}{x^2(x+3)}$$

So, we'll need $\lim_{x \rightarrow 0^-} \frac{1}{x^2(x+3)}$

Picture $x = -0.1$

$\frac{1}{(pos)(pos)} \rightarrow \lim_{x \rightarrow 0^-} \frac{1}{x^2(x+3)} = +\infty$

and $\lim_{x \rightarrow 0^+} \frac{1}{x^2(x+3)}$

Picture $x = 0.1$

$\frac{1}{(pos)(pos)} \rightarrow \lim_{x \rightarrow 0^+} \frac{1}{x^2(x+3)} = +\infty$

$$b.) \lim_{x \rightarrow 3} \frac{x-3}{x^4 - 9x^2} = \lim_{x \rightarrow 3} \frac{1}{x^2(x+3)}$$

$$= \frac{1}{3^2(3+3)} = \frac{1}{9 \cdot 6} = \frac{1}{54}$$

$$\lim_{x \rightarrow 0} \frac{1}{x^2(x+3)} = +\infty$$

$$\lim_{x \rightarrow 0} \frac{x-3}{x^4 - 9x^2} = +\infty$$

$$c.) \lim_{x \rightarrow -3} \frac{x-3}{x^4 - 9x^2} = \lim_{x \rightarrow -3} \frac{1}{x^2(x+3)}$$

Part c, you'll need to
find left and right-
sided limits first.

So, we need $\lim_{x \rightarrow -3^-} \frac{1}{x^2(x+3)}$

Picture $x = -3.1$

$\frac{1}{(pos)(neg)} \rightarrow \lim_{x \rightarrow -3^-} \frac{1}{x^2(x+3)} = -\infty$

and $\lim_{x \rightarrow -3^+} \frac{1}{x^2(x+3)}$

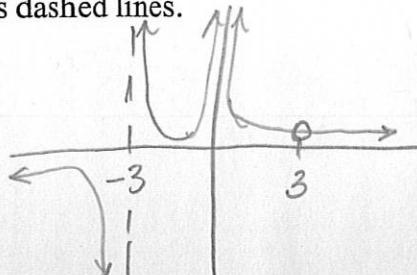
Picture $x = -2.9$

$\frac{1}{(pos)(pos)} \rightarrow \lim_{x \rightarrow -3^+} \frac{1}{x^2(x+3)} = +\infty$

Check by graphing the function $y = \frac{x-3}{x^4 - 9x^2}$.

Copy vertical asymptotes as dashed lines.

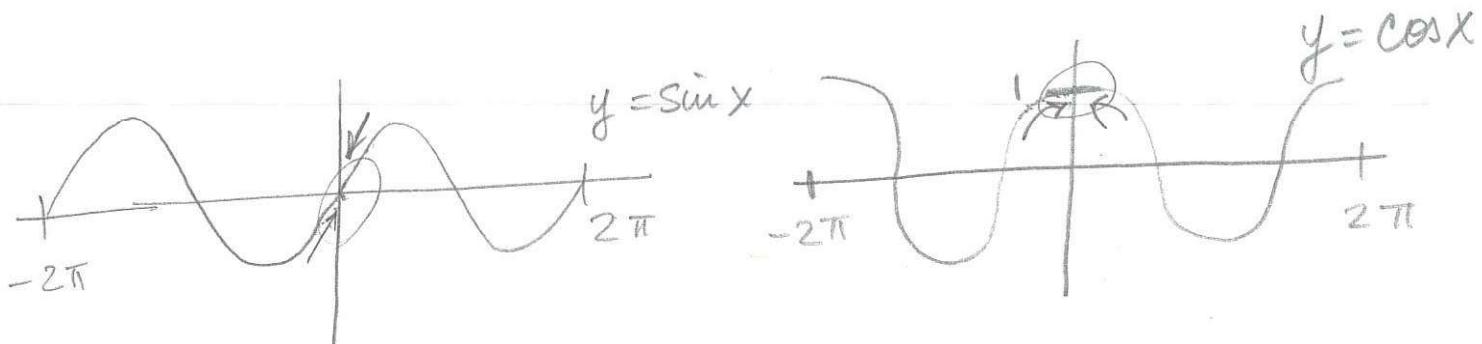
Label the hole at $x = 3$.



$\lim_{x \rightarrow -3} \frac{x-3}{x^4 - 9x^2}$ due

Trig Limits:

Once again, it helps to have a clear picture of the sine and cosine curves. Draw them now.



expl 5: Find $\lim_{\theta \rightarrow 0} \left(\frac{2 + \sin \theta}{1 - \cos^2 \theta} \right)$. \Rightarrow Direct substitution $\rightarrow \frac{2}{0}$

So, we need $\lim_{\theta \rightarrow 0^-} \left(\frac{2 + \sin \theta}{1 - \cos^2 \theta} \right)$ \Rightarrow $\frac{\text{approaches 2}}{\text{approaches 0 but is pos.}} \rightarrow +\infty$

Picture $\theta = -0.1$

and $\lim_{\theta \rightarrow 0^+} \frac{2 + \sin \theta}{1 - \cos^2 \theta} \Rightarrow$ $\frac{\text{approaching 2}}{\text{approaches 0 but is pos}} \rightarrow +\infty$

Picture $\theta = 0.1$

So, $\lim_{\theta \rightarrow 0} \frac{2 + \sin \theta}{1 - \cos^2 \theta} = +\infty$

