

Calculus I
Class notes
Continuity (section 2.6)

Can you trace a function's graph from the far left to the far right without lifting the pencil?

2:00

The informal definition of a continuous function appears above. You might have seen that in algebra class. Consider these pictures here to better understand it. We will then move on to a more rigorous definition that uses limits.

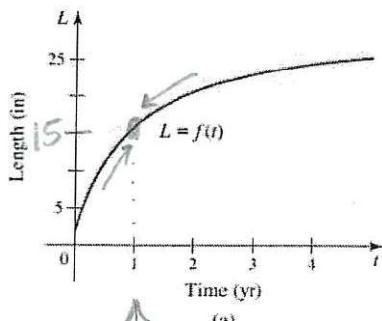
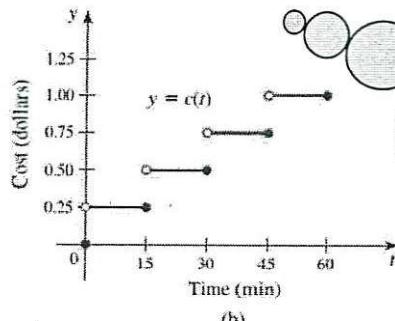


Figure 2.42



The left graph is continuous. Trace it from left to right completely. The right graph is *not* continuous.

Definition: Continuity at a Point: A function is said to be continuous at $x = a$ if and only if $\lim_{x \rightarrow a} f(x) = f(a)$.

More specifically, this means three things.

1.) $f(a)$ is defined. This means that a is in the domain of f .

2.) $\lim_{x \rightarrow a} f(x)$ exists

3.) $\lim_{x \rightarrow a} f(x) = f(a)$

Do you recall how we use right and left-sided limits to find a limit?

Hence, if f is continuous at a , then we can use direct substitution to find this limit.

expl 1a: Approximate $\lim_{t \rightarrow 1} f(t)$ for the continuous graph of $L = f(t)$ shown on the left above.

$$\lim_{t \rightarrow 1} f(t) = 15 \text{ because } \lim_{t \rightarrow 1^-} f(t) = \lim_{t \rightarrow 1^+} f(t) = 15$$

expl 1b: Try to find $\lim_{t \rightarrow 15} c(t)$ for the *non*-continuous graph of $y = c(t)$ shown on the right above.
Just try, I dare ya!

$$\lim_{t \rightarrow 15^-} c(t) = 0.25 \text{ But } \lim_{t \rightarrow 15^+} c(t) = 0.50$$

So, $\lim_{t \rightarrow 15} c(t)$ does not exist.

Definition: Point of discontinuity: An x-value where the graph of the function is not continuous. You could not trace the function without lifting your pencil at this x-value.

expl 2: Find the points of discontinuity in the interval $(0, 5)$. For each point of discontinuity, state which of the three criteria from page 1 is not met.

Notice how the interval $(0, 5)$ does not include the endpoints.



Point of Discontinuity (<u>x</u> -value)	Which criteria is <u>not</u> met?
$x = 1$	3.) $\lim_{x \rightarrow 1} f(x) \neq f(1)$.
$x = 2$	2.) $\lim_{x \rightarrow 2} f(x)$ dne $(\lim_{x \rightarrow 2} f \neq \lim_{x \rightarrow 2^+} f)$
$x = 3$	1.) $f(3)$ dne

Classification of Points of Discontinuity:

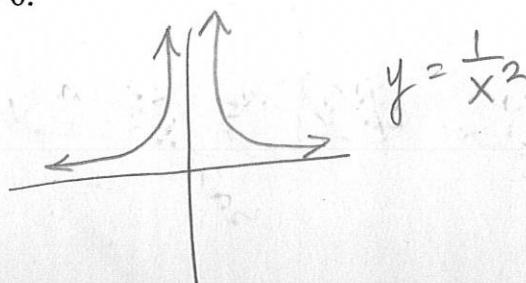
We further break down points of discontinuity into three types.

Definition: Removable discontinuity: This is a point of discontinuity where you could remove the discontinuity by redefining a function value. This would be true for $x = 1$ and $x = 3$ above.

Definition: Jump discontinuity: This is a point of discontinuity where the graph “jumps” to a new location. It is not removable like above. Where does this happen in the above graph?

$$x = 2$$

Definition: Infinite discontinuity: This is a point of discontinuity $x = a$ because $\lim_{x \rightarrow a} f(x)$ is equal to infinity or its negative (and is said to not exist). Picture the graph of $y = \frac{1}{x^2}$ and its point of discontinuity $x = 0$.



Algebraic Analysis of Continuity:

We will check the three criteria given on page 1 one at a time.

expl 3: Determine if the function is continuous at a .

a.) $f(x) = \frac{2x^2 + 3x + 1}{x^2 + 5x}$, $a = -5$

Criteria #1: $f(-5) = \frac{2(-5)^2 + 3(-5) + 1}{(-5)^2 + 5(-5)} = \frac{36}{0}$ $f(-5)$ dne

So, $f(x)$ is not continuous at $x = -5$.

b.) $f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x - 3}, & x \neq 3 \\ 2, & x = 3 \end{cases}$ for $a = 3$

Use the first formula to find $\lim_{x \rightarrow 3} f(x)$. Is it equal to $f(3)$?

Criteria #1: $f(3) = 2$ ✓

Criteria #2: $\lim_{x \rightarrow 3} \frac{x^2 - 4x + 3}{x - 3}$

$$= \lim_{x \rightarrow 3} \frac{(x-3)(x-1)}{(x-3)} = \lim_{x \rightarrow 3} (x-1) = 3-1 = 2 \quad \checkmark$$

Criteria #3: Is $\lim_{x \rightarrow 3} f(x) = f(3)$?

Yes. \rightarrow So, the func is continuous at $x = 3$.

c.) $f(x) = \frac{5x-2}{x^2 - 9x + 20}$, $a = 4$

Criteria #1: $f(4) = \frac{5 \cdot 4 - 2}{4^2 - 9 \cdot 4 + 20} = \frac{18}{0}$

Be ready to factor to explore functions.

$f(4)$ dne

Criteria #1 fails

\rightarrow So, $f(x)$ is not continuous at $x = 4$.

Continuity Rules:

These can be handy when exploring functions related to ones you already know.

THEOREM 2.8 Continuity Rules

If f and g are continuous at a , then the following functions are also continuous at a .
Assume c is a constant and $n > 0$ is an integer.

- a. $f + g$
- b. $f - g$
- c. cf
- d. fg
- e. f/g , provided $g(a) \neq 0$
- f. $(f(x))^n$

These can be proven using limit laws.

The above rules can be used to show that the following are true.

THEOREM 2.9 Polynomial and Rational Functions

- a. A polynomial function is continuous for all x .
- b. A rational function (a function of the form $\frac{p}{q}$, where p and q are polynomials) is continuous for all x for which $q(x) \neq 0$.

Find the points of discontinuity of a rational function by solving "bottom = 0".

Do you recall the definition of a composite function? We have some important rules here.

THEOREM 2.10 Continuity of Composite Functions at a Point

If g is continuous at a and f is continuous at $g(a)$, then the composite function $f \circ g$ is continuous at a .

Pronounced "f of g of x".

THEOREM 2.11 Limits of Composite Functions

- 1. If g is continuous at a and f is continuous at $g(a)$, then

$$\lim_{x \rightarrow a} f(g(x)) = f\left(\lim_{x \rightarrow a} g(x)\right) = f(g(a))$$

- 2. If $\lim_{x \rightarrow a} g(x) = L$ and f is continuous at L , then

$$\lim_{x \rightarrow a} f(g(x)) = f\left(\lim_{x \rightarrow a} g(x)\right) = f(L)$$

I will add to what the book has here by noting that statement 1 implies $\lim_{x \rightarrow a} f(g(x)) = f(g(a))$.

Likewise, statement 2 implies $\lim_{x \rightarrow a} f(g(x)) = f(L)$ given its definition of L .

These theorems can be used to find limits such as $\lim_{x \rightarrow 2} \left(\frac{x^2 + 3}{x + 4} \right)^3$. Do you see the composite

function? Find f and g such that $(f \circ g)(x) = \left(\frac{x^2 + 3}{x + 4} \right)^3$.

$$\rightarrow f(x) = x^3 \text{ and } g(x) = \left(\frac{x^2 + 3}{x + 4} \right)$$

2.00

$$f(x) = \sqrt{x}$$

$$g(x) = \frac{x^3 - 2x^2 - 8x}{x-4}$$

expl 4: Find the following limit. Leave your answer in exact (radical) form.

$$\lim_{x \rightarrow 4} \sqrt{\frac{x^3 - 2x^2 - 8x}{x-4}}$$

First, find $\lim_{x \rightarrow 4} g(x) = \lim_{x \rightarrow 4} \frac{x^3 - 2x^2 - 8x}{x-4}$

$$= \lim_{x \rightarrow 4} \frac{x(x^2 - 2x - 8)}{(x-4)}$$

$$= \lim_{x \rightarrow 4} \frac{x(x-4)(x+2)}{(x-4)}$$

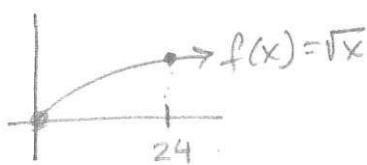
$$= \lim_{x \rightarrow 4} x(x+2) = 4 \cdot 6 = 24 = L$$

Define f and g such that

$$f(g(x)) = \sqrt{\frac{x^3 - 2x^2 - 8x}{x-4}}$$

Use statement 2
of Theorem 2.11
to think your way
through this limit.

Is f continuous at $L = 24$? - yes - it fits the defn. on page 1.



So, by Theorem 2.11, Statement # 2,

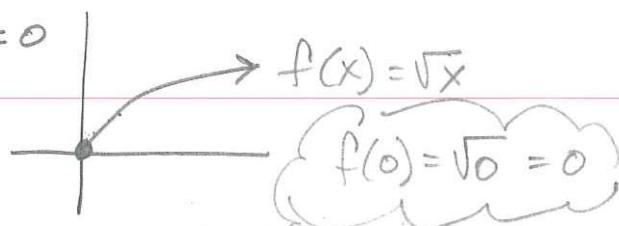
$$\lim_{x \rightarrow 4} \sqrt{\frac{x^3 - 2x^2 - 8x}{x-4}} = f(L) = f(24) = \sqrt{24} = \sqrt{4 \cdot 6} = 2\sqrt{6}$$

Definition: Continuity on an Interval's Endpoint (Right-continuous): A function f is continuous from the right (right-continuous) at a if $\lim_{x \rightarrow a^+} f(x) = f(a)$.

Draw the graph of $f(x) = \sqrt{x}$ and use it to find $\lim_{x \rightarrow 0^+} f(x) = 0$

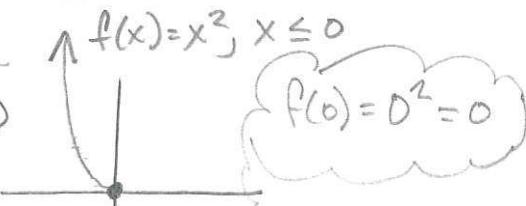
Is $f(x) = \sqrt{x}$ right-continuous at 0?

Yes, because $\lim_{x \rightarrow 0^+} f(x) = f(0)$



Definition: Continuity on an Interval's Endpoint (Left-continuous): A function f is continuous from the left (left-continuous) at a if $\lim_{x \rightarrow a^-} f(x) = f(a)$.

Draw the graph of $f(x) = x^2, x \leq 0$ and use it to find $\lim_{x \rightarrow 0^-} f(x) = 0$



This means f is the familiar parabola but with a **restricted domain**; only graph the left half.

5

Is $f(x) = x^2, x \leq 0$ left-continuous at $x = 0$?

- Yes, because $\lim_{x \rightarrow 0^-} f(x) = f(0)$

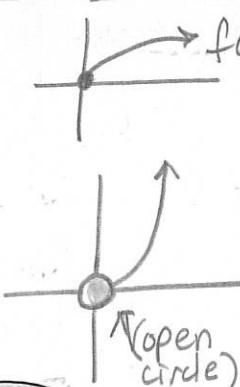
Definition: Continuity on an Interval: A function f is continuous on an interval I if it is continuous on all points in the interval I .

If I contains endpoints (meaning its notation is written with square brackets and *not* just parentheses), continuity on I means continuity from the left *or* continuity from the right.

Once again draw $f(x) = \sqrt{x}$.

Determine if f is continuous on the interval $[0, \infty)$.

Draw $f(x) = x^2, x > 0$. Determine if f is continuous on the interval $[0, \infty)$. Is it continuous on $(0, \infty)$?



$f(x) = \sqrt{x}$ is right-cont at 0, we will say f is continuous on $[0, \infty)$.

Is $f(x) = x^2, x > 0$ continuous on the interval $[0, \infty)$?

- No because 0 is not in the domain of the func. and so $\lim_{x \rightarrow 0^+} f(x) \neq f(0)$.

Is f cont on $(0, \infty)$? - yes

The restricted domain changed from the last page. How does that affect the graph?

THEOREM 2.12 Continuity of Functions with Roots

Assume n is a positive integer. If n is an odd integer, then $(f(x))^{1/n}$ is continuous at all points at which f is continuous.

If n is even, then $(f(x))^{1/n}$ is continuous at all points a at which f is continuous and $f(a) > 0$.

Again, this restriction about roots hinges on if the root's index (n) is even. If we are dealing with a square root, fourth root, etc. we must ensure $f(a) > 0$. Otherwise, $(f(a))^{1/n}$ would not exist (in the real numbers).

Picture any function f , for instance $f(x) = x + 4$. In the language of the theorem, we might be investigating

$$(f(x))^{1/5} = (x+4)^{1/5} = \sqrt[5]{x+4}.$$

$n=5$

2:00

$$f(x) = x^2 - 3x + 2$$

$$n = 2$$

expl 5: Determine the intervals where g is continuous. At which finite endpoints is g continuous from left or right?

a.) $g(x) = \sqrt{x^2 - 3x + 2}$

From Thm 2.12, we need to find where $f(x) = x^2 - 3x + 2$ is continuous

and $f(a) > 0$. We know f is cont on $(-\infty, \infty)$ because it's a polynomial. Find $f(a) > 0$:

So, from our graph, we see

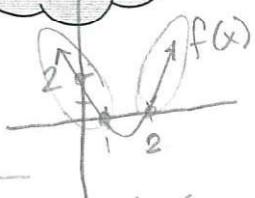
$f(x) > 0$ on $(-\infty, 1)$ and $(2, \infty)$.

$$f(x) = x^2 - 3x + 2 = 0$$

$$(x-2)(x-1) = 0$$

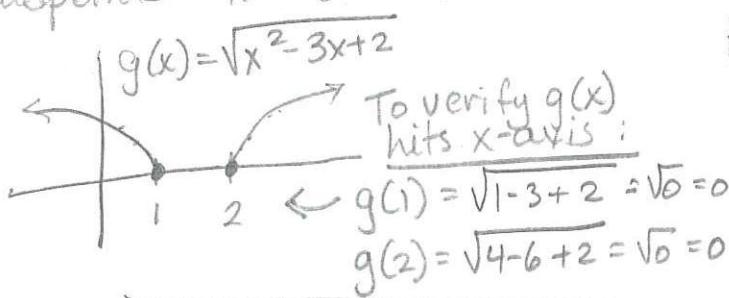
$$x=2, x=1$$

Where is
 $f > 0$?



So, by Thm 2.12, $g(x) = (x^2 - 3x + 2)^{1/2}$ is continuous on $(-\infty, 1)$ and $(2, \infty)$.

The finite endpoints $x=1$ and $x=2$ must be looked at.



b.) $g(x) = \sqrt[3]{x^2 - 3x + 2}$

$$f(x) = x^2 - 3x + 2$$

$$n = 3 \text{ (odd)}$$

Thm 2.12 says g is continuous where f is continuous.

And f is continuous on $(-\infty, \infty)$.

$$\text{Hence, } g = \sqrt[3]{x^2 - 3x + 2}$$

is continuous on $(-\infty, \infty)$.

In the theorem's language,
determine the function f
and the value of n .

Where is
 $f > 0$?

From graph and accompanying
algebra, we see

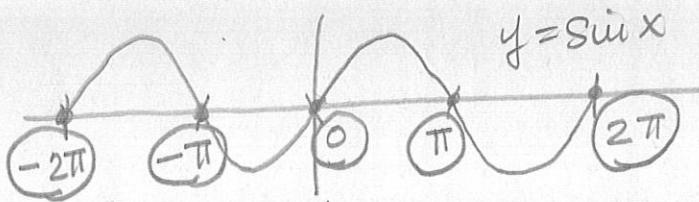
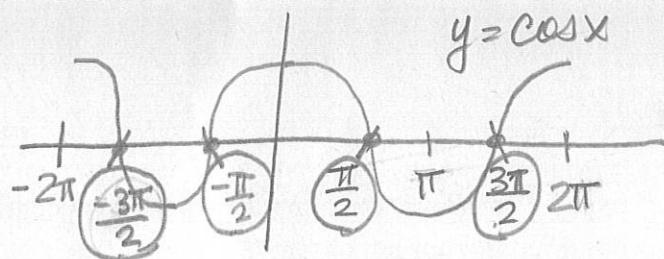
$$\lim_{x \rightarrow 1^-} g = g(1) \text{ and}$$

$$\lim_{x \rightarrow 2^+} g = g(2), \text{ we}$$

see g is left-cont at $x=1$
and right-cont at $x=2$.

Hence, g is continuous
at $(-\infty, 1]$ and $[2, \infty)$.

You could
graph to check.



Continuity of Transcendentals: Trigonometry:

Picture the graphs of $y = \sin(x)$ and $y = \cos(x)$. Would you agree that they are both continuous over the interval $(-\infty, \infty)$? Sketch them a bit here.

Theorem 2.8, part e, is used to show that the other main trig functions are continuous at a , as long as they are defined at a . Consider the following definitions of these trig functions and think on what values make the bottoms 0 (which would be those values for which the function is *not* defined).

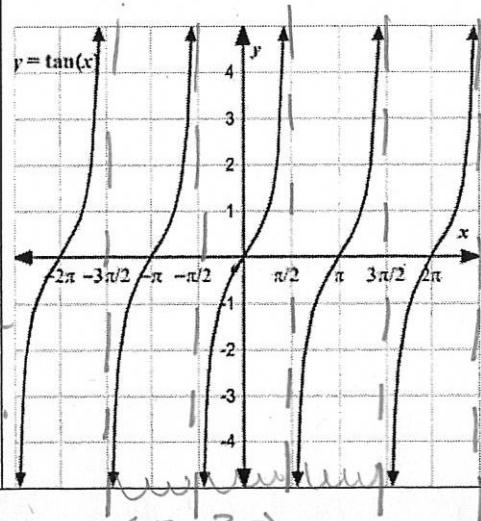
$y = \tan(x) = \frac{\sin(x)}{\cos(x)}$ This would be undefined (so <u>not continuous</u>) at $\dots -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots$ or $x = \frac{\pi}{2} + n\pi$ for $n \in \mathbb{Z}$.	cosecant $y = \csc(x) = \frac{1}{\sin(x)}$ This would be <u>not continuous</u> at $\dots -2\pi, -\pi, 0, \pi, 2\pi, \dots$ or $x = n\pi$ for $n \in \mathbb{Z}$.
secant $y = \sec(x) = \frac{1}{\cos(x)}$ This would be <u>not continuous</u> at $x = \frac{\pi}{2} + n\pi, n \in \mathbb{Z}$.	cotangent $y = \cot(x) = \frac{\cos(x)}{\sin(x)}$ This would be <u>not continuous</u> at $x = n\pi$ for $n \in \mathbb{Z}$.

Here is a graph of the tangent function I got from <https://www.varsitytutors.com>.

You can see where the function is undefined (vertical asymptotes) are exactly the points of discontinuity we predicted above.

$y = \tan x$ is \rightarrow
only continuous between
these vertical asymptotes.
or

$(-\frac{3\pi}{2}, -\frac{\pi}{2})$ and $(-\frac{\pi}{2}, \frac{\pi}{2})$ and $(\frac{\pi}{2}, \frac{3\pi}{2})$.

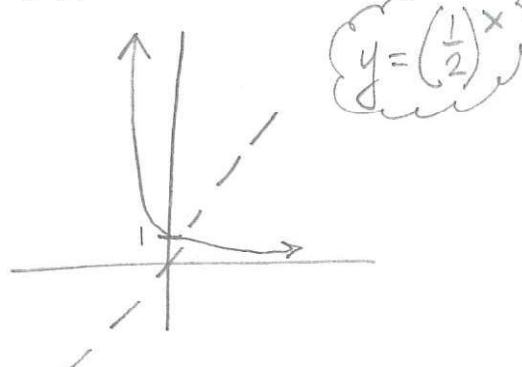


Continuity of Transcendentals: Exponentials and Logarithms:

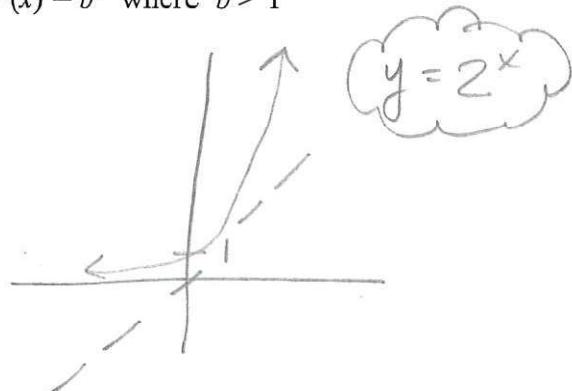
We next consider the exponential function $f(x) = b^x$ where $b > 0$ and $b \neq 1$. As you will recall, its domain is $(-\infty, \infty)$ and it is continuous along its entire domain.

Draw an example of this function where $b < 1$ and one where $b > 1$ for your reference.

$$f(x) = b^x \text{ where } 0 < b < 1$$



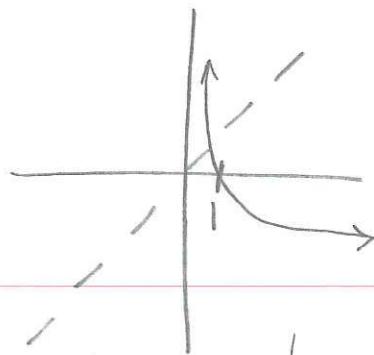
$$f(x) = b^x \text{ where } b > 1$$



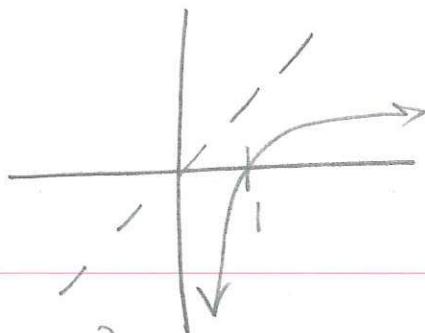
Recall, the inverse of the exponential function is the logarithmic function. We also see that these functions are continuous over their entire domains.

Draw an example of this function where $b < 1$ and one where $b > 1$ for your reference.

$$f^{-1}(x) = \log_b x \text{ where } 0 < b < 1$$



$$f^{-1}(x) = \log_b x \text{ where } b > 1$$



Domain: $(0, \infty)$

What is the domain of these log functions? It will be the same as the range of the exponential functions from whence they came.

It happens to be true that a continuous function's inverse will also be continuous. X

These log. fcts are continuous on the interval $(0, \infty)$.

Intermediate Value Theorem (IVT):

This is a surprisingly handy fact. It says that if a function is continuous in some interval, then the graph must contain at least one point for each y -value inside the range of that interval. Here is a picture from the book.

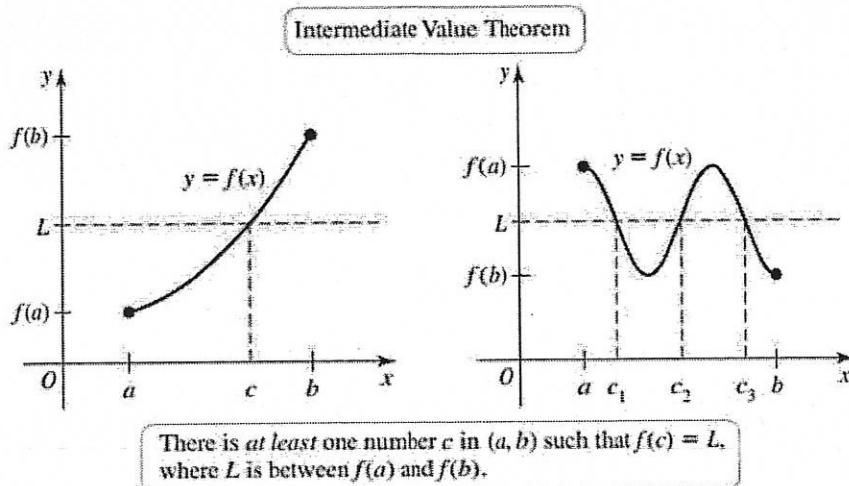


Figure 2.51

Here is the statement in its full glory.

THEOREM 2.14 Intermediate Value Theorem

Suppose f is continuous on the interval $[a, b]$ and L is a number strictly between $f(a)$ and $f(b)$. Then there exists at least one number c in (a, b) satisfying $f(c) = L$.

The book shows us why the function must be continuous for this statement. See the example here that is not continuous and so does not necessarily have such a point.

We will use the theorem on the next page.

This was more useful before the advent of graphing calculators. However, you will still see this theorem used in higher math.

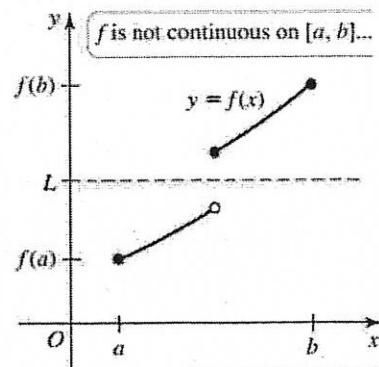


Figure 2.52

expl 6: Use the Intermediate Value Theorem to show the following equation has a solution in the given interval. Use a grapher to find the solutions, rounding to three decimal places. Lastly, graph the function on paper.

$$x^3 - 5x^2 + 2x = -1, \quad (-1, 5)$$

$$f(x) = x^3 - 5x^2 + 2x$$

$$a = -1$$

$$b = 5$$

From the theorem, determine a and b . Find $f(a)$ and $f(b)$. Is the premise of the theorem satisfied? Can you use it?

We know $f(x)$ is continuous on $[-1, 5]$.

$$\text{And } f(a) = f(-1) = (-1)^3 - 5(-1)^2 + 2(-1) \\ = -1 - 5 - 2$$

$$= -8$$

$$\text{and } f(b) = f(5) = 5^3 - 5 \cdot 5^2 + 2 \cdot 5 \\ = 125 - 125 + 10 \\ = 10$$

Let $L = -1$ (from eqn) and we see how L is strictly between $f(a) = -8$ and $f(b) = 10$.

So, Theorem 2.14 says there exists at least one number c in $(-1, 5)$ satisfying $f(c) = L = -1$.

