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Many functions are the
composition of two functions
whose derivative rules we know.

Calculus |

N
Class notes O,
The Chain Rule (section 3.7)

What’s the derivative of the function y =e™*?
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We know that -C-l—"(e") =¢" but we cannot simply say that ' =&~ %ecause the exponent is not
X

just x. In fact, this exponent of —3x can be thought of as a function unto itself. And, that’s the
key. We need to start seeing some functions as the composition of two functions whose

derivative rules we know.

We can think of y=e7" as f (g (x)) where /g(x) ——3x and S (u) = ¢". Find the formula for
the composed functlon f (g(x)) to Verlfy that, =+

) = £- 3><

You can review “function
composutlon by searchmg forit
on www.khanacademy.org.
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For this and other complicated functions, we will use the Chain Rule. Often algebr f}a\can beused /! €5
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like in the case of —((2x+6) ) How would you do that? 2‘7&-{-@ LQK"" b)( : \rC;(AZ"’ te)
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However, once learned, the Chain Rule will prove easier. By the way, do you see the functions f f.’w "
TL s‘i".
and g that make up the function /(x) = (2x+6) "
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THEOREM 3.12 The Chain Rule x@ gt <o e
~ Suppose y = f(u) is differentiablc at w = g{x) and i = g(x) is differentiable atx. | -y

The composite function ¥y = f(g(x}} is differentiable at x, and its derivative can be e

expressed in two equivalent ways.
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O ;g(f{g( v))= f {£€ )-8 (x) (2)

- The derivative of f evaluated
~ at g multiplied by the
~derivative of g evaluated at x.




Once you get | the hang of it, this will come naturally. The book has this handy set of steps to help
the beginner.

PROCEDURE Using the Chain Rule
Assume the differentiable functiony = f(g(x)) is given,

1. Identify an outer function f and an inner function g, and let u = g(x).
/ JR» lace g(i) with # to express y in terms of w:
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V& | f(s:(x})=n (u). 2 :
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3. Calculate the pmdmt ;}-— ;i—H - cumbersome at first but
e dx S :
- you will learn to do it
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4. Replace u with g{x) in é—- to obtain —

- with more ﬂuidity.
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Chain Rule for Powers:

E Since we do this a lot, it is somewhat helpful that the book draws out this specifically for its own
formula. In fact, it is just the Chain Rule combined with the Power Rule from earlier.
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THEOREM 3.13 Chain Rule for Powers ) \5 \‘L\ €
if g is differentiable for all x in its domain and p is a real number, then (7 %"\Q\jﬁ\ ~
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expl 2: Find = 2x+6C/ 3 ( 2,><+Q>> (Q

expl 3: Find —d—(
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L .(_an(cos(%x))) = =

. ThlS is aIso wnttenas = '; =
expl 6: Find y' for y=sin (cos(Sx)) :

y = (suens 30)3
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expl 7: The total energy in megawatt-hours (M) used by a town is given by

E(t) =400t + ail L1 -sin 7a) 12 0 where 1 is measured in hours w1th t= 0 corres ondin
2 it bt b ke P g
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to noon. \'\
a) Find the power or the rare of energy consumptlon P(r) E'(2), in terms of megawatts W\/

PO= E'(£)= oo + a—»"—»‘ = (MCW/,Q De
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Notice the slopes
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c.) Algebraically find | the t1me of day that the > power isata maxu_np_g;" What is the power at that 20
time? & o
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expl 7c continued:

sivo=o B 6=gT 2T, ()
So far, we should be at sin(”%ﬁ:O.Do you recall the graph of _y_=sin(t9) for 0<0<2z?

Draw it here to help find the z-values that make sin (72 =0
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d.) Your work also revealed a minimum power. When does that occur and at what time will the
city see that? ' EL
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