

Many functions are the composition of two functions whose derivative rules we know.

What's the derivative of the function $y = e^{-3x}$?

We know that $\frac{d}{dx}(e^x) = e^x$ but we *cannot* simply say that $y' = e^{-3x}$ because the exponent is *not*

just x . In fact, this exponent of $-3x$ can be thought of as a function unto itself. And, that's the key. We need to start seeing some functions as the composition of two functions whose derivative rules we know.

We can think of $y = e^{-3x}$ as $f(g(x))$ where $g(x) = -3x$ and $f(u) = e^u$. Find the formula for the composed function $f(g(x))$ to verify that.

$$\begin{aligned} f(g(x)) &= f(-3x) \\ &= e^{-3x} \quad \checkmark \end{aligned}$$

You can review "function composition" by searching for it on www.khanacademy.org.

For this and other complicated functions, we will use the Chain Rule. Often, algebra can be used

like in the case of $\frac{d}{dx}((2x+6)^3)$. How would you do that?

$$(2x+6)^3 = (2x+6)(2x+6)(2x+6)$$

... Get it in the

However, once learned, the Chain Rule will prove easier. By the way, do you see the functions f and g that make up the function $h(x) = (2x+6)^3$?

$f(u) = u^3$; $g(x) = 2x+6$ such that $f(g(x)) = (2x+6)^3$ { of many terms and ... }

THEOREM 3.12 The Chain Rule

Suppose $y = f(u)$ is differentiable at $u = g(x)$ and $u = g(x)$ is differentiable at x . The composite function $y = f(g(x))$ is differentiable at x , and its derivative can be expressed in two equivalent ways.

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \quad (1)$$

$$\text{OR} \quad \frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x) \quad (2)$$

The derivative of f evaluated at g multiplied by the derivative of g evaluated at x .

Once you get the hang of it, this will come naturally. The book has this handy set of steps to help the beginner.

PROCEDURE Using the Chain Rule

Assume the differentiable function $y = f(g(x))$ is given.

1. Identify an outer function f and an inner function g , and let $u = g(x)$.

2. Replace $g(x)$ with u to express y in terms of u :

$$y = f(g(x)) \xrightarrow{u} y = f(u).$$

3. Calculate the product $\frac{dy}{du} \cdot \frac{du}{dx}$.

4. Replace u with $g(x)$ in $\frac{dy}{du}$ to obtain $\frac{dy}{dx}$.

It does feel
cumbersome at first but
you will learn to do it
with more fluidity.

expl 1a: Find y' for $y = e^{-3x}$.

$$\textcircled{1} \quad f(u) = e^u \quad ; \quad g(x) = -3x = u$$

$$\rightarrow y = f(g(x)) = f(-3x) = e^{-3x} \quad \checkmark$$

$$\textcircled{2} \quad y = e^{-3x}$$

$$y = e^u$$

$$\textcircled{3} \quad \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$= e^u \cdot (-3)$$

$$= -3e^u$$

$$= -3e^{-3x}$$

$$\rightarrow \text{So, } y' \text{ or } \frac{dy}{dx} = -3e^{-3x}$$

\textcircled{4}

expl 1b: Find y' for $y = 5e^{-3x}$.

$$y = \sqrt{-3x}$$

$$y = (-3x)^{1/2}$$

Power Rule

$$\frac{d}{dx}(x^n) = n \cdot x^{n-1}$$

\textcircled{1} (Chain Rule)

$$y' = f'(g(x)) \cdot g'(x)$$

$$= \frac{1}{2}(-3x)^{-1/2} \cdot (-3)$$

$$\boxed{y' = -\frac{3}{2}(-3x)^{-1/2}}$$

$$\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$$

from page 1

$$f(u) = u^{1/2}$$

$$g(x) = -3x$$

$$g'(x) = -3$$

$$f'(u) = \frac{1}{2}u^{-1/2}$$

$$f'(g(x)) = \frac{1}{2}(-3x)^{-1/2}$$

Chain Rule for Powers:

Since we do this a lot, it is somewhat helpful that the book draws out this specifically for its own formula. In fact, it is just the Chain Rule combined with the Power Rule from earlier.

THEOREM 3.13 Chain Rule for Powers

If g is differentiable for all x in its domain and p is a real number, then

$$f(u) = u^p \quad \frac{d}{dx}((g(x))^p) = p(g(x))^{p-1}g'(x).$$

Power Rule

from Chain Rule

expl 2: Find $\frac{d}{dx}((2x+6)^3) = 3(2x+6)^2 \cdot 2$
 $= 6(2x+6)^2$

$g(x) = 2x+6$
 $p = 3$

expl 3: Find $\frac{d}{dx}(\sqrt{x^2+1}) = \frac{d}{dx}((x^2+1)^{1/2})$

Do you recall the exponent equivalency for roots?

The Orig. Chain Rule
 $f(u) = u^{1/2} \rightarrow f'(u) = \frac{1}{2}u^{-1/2}$
 $g(x) = x^2+1 \rightarrow g'(x) = 2x$
 $\frac{d}{dx}(x^2+1)^{1/2} = f'(g(x)) \cdot g'(x)$
 $= \frac{1}{2}(x^2+1)^{-1/2} \cdot 2x$
 $= x(x^2+1)^{-1/2}$

$\frac{d}{dx}(fg) = f'g + fg'$

expl 4: Find y' for $y = x(x+2)^{1/3}$

Product Rule, anyone?

$y' = 1(x+2)^{1/3} + x \cdot \frac{1}{3}(x+2)^{-2/3}$

$y' = (x+2)^{1/3} + \frac{x}{3}(x+2)^{-2/3}$

$g(x) = (x+2)^{1/3}$

$g'(x) = \frac{1}{3}(x+2)^{-2/3} \cdot 1$

Chain Rule

Question: Can I do this

$x(x+2)^{1/3} = (x^2+2x)^{1/3}$?

OR
 $y' = (x+2)^{1/3} + \frac{x}{3(x+2)^{2/3}}$

$f(u) = u^{1/3}$
 $g(x) = x^2+2x$

No Order of operations

$$f(g(x)) = \tan(5x^2)$$

expl 5: Find y' for $y = \tan(5x^2)$.

Chain Rule

$$f(u) = \tan u \quad g(x) = 5x^2$$
$$f'(u) = \sec^2 u \quad g'(x) = 10x$$

$$\begin{aligned}\frac{d}{dx}(\tan(5x^2)) &= f'(g(x)) \cdot g'(x) \\ &= \sec^2(5x^2) \cdot 10x \\ y' &= 10x \sec^2(5x^2)\end{aligned}$$

$$\frac{d}{dx}(5x^2) = 10x$$

expl 6: Find y' for $y = \sin^5(\cos(3x))$.

$$y = (\sin(\cos(3x)))^5$$

Power Rule

$$y' = 5(\sin(\cos(3x)))^4 \cdot \frac{d}{dx}(\sin(\cos(3x)))$$

This is also written as

$$y = \underline{\underline{\sin(\cos(3x))}}^5$$

$$\cos(\cos(3x)) \cdot \frac{d}{dx}(\cos(3x))$$

Chain Rule

~~Three~~
Two instances
of the Chain
Rule?!?

$$-\sin(3x) \cdot \frac{d}{dx}(3x)$$

Chain Rule

$$y' = 5(\sin(\cos(3x)))^4 \cdot \cos(\cos(3x))(-\sin(3x)) \cdot 3$$

$$y' = -15(\sin(\cos(3x)))^4 \cdot \cos(\cos(3x)) \cdot \sin(3x)$$

Remember

$$\cos(\cos(3x)) \neq \cos^2(3x)$$

$$\sin(\pi t/12) = \sin(\pi/12 \cdot t)$$

expl 7: The total energy in megawatt-hours (MWh) used by a town is given by

$$E(t) = 400t + \frac{2400}{\pi} \sin(\pi t/12), \quad t \geq 0 \text{ where } t \text{ is measured in hours with } t=0 \text{ corresponding to noon.}$$

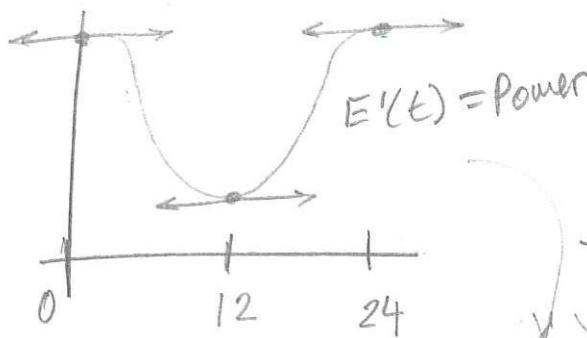
a.) Find the power, or the rate of energy consumption, $P(t) = E'(t)$, in terms of megawatts. MW

$$P(t) = E'(t) = 400 + \frac{2400}{\pi} \cos(\pi t/12) \cdot \frac{\pi}{12}$$

Chain Rule

$$E'(t) = 400 + 200 \cos(\pi t/12) \quad \text{MW}$$

b.) Graph $P(t) = E'(t)$ in the window $[0, 24] \times [0, 700]$.



Notice the slopes of tangent lines at the maxes and min are 0.

To find maxes and mins on the graph of $E'(t)$, we'll derive $E''(t)$ and set it equal to 0.

c.) Algebraically find the time of day that the power is at a maximum? What is the power at that time?

$$E'(t) = 400 + 200 \cos(\pi t/12)$$

$$E''(t) = 0 - 200 \sin(\pi t/12) \cdot \frac{\pi}{12} \quad \text{Chain Rule}$$

$$E''(t) = -\frac{200\pi}{12} \sin(\pi t/12)$$

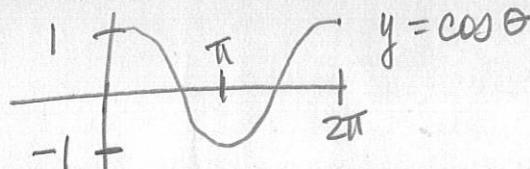
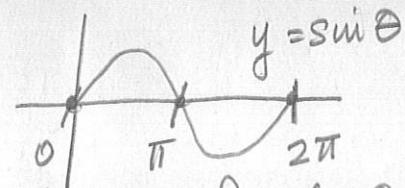
We need $E''(t)$. Do you see why?

To find maxes, mins, set $E''(t) = 0$

$$0 = -\frac{200\pi}{12} \sin(\pi t/12)$$

Continued discussion of part c is on the next page.

$$0 = \sin(\pi t/12)$$



expl 7c continued:

So far, we should be at $\sin(\pi t/12) = 0$. Do you recall the graph of $y = \sin(\theta)$ for $0 \leq \theta \leq 2\pi$?

Draw it here to help find the t -values that make $\sin(\pi t/12) = 0$.

$$\frac{\pi t}{12} = 0 \quad \text{or} \quad \frac{\pi t}{12} = \pi \quad \text{or} \quad \frac{\pi t}{12} = 2\pi$$

$t = 0$ $t = 12\pi/\pi$ $t = 24\pi/\pi$

$t = 0$ $t = 12$ $t = 24$

$$\text{So, } E'(0) = 400 + 200 \cos(\pi \cdot 0 / 12)$$

$$= 400 + 200 \cos(0)^{-1} = 600 \text{ MW}$$

This is noon

$$E'(12) = 400 + 200 \cos(\pi \cdot 12 / 12)$$

$$= 400 + 200 \cos(\pi)^{-1}$$

$$= 400 - 200 = 200 \text{ MW}$$

This is the maximum.

This is midnight.

d.) Your work also revealed a minimum power. When does that occur and at what time will the city see that?

Minimum power happens
at midnight ($t = 12$)

and its 200 MW.