

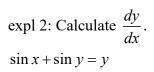
Calculus I Class notes

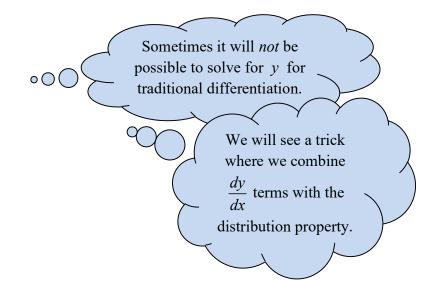
Implicit Differentiation (section 3.8)

We have been finding the derivatives of functions that are in the form $y = blah \ blah \ blah$ which is said to be an **explicitly** defined function. But there are lots of functions that are **implicitly** defined such as $3x + 4y^3 = 7$ whose derivative we may need. What's a student to do?

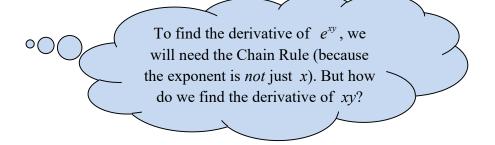
Coming to our rescue, we have **implicit differentiation**. We will find the derivatives of all terms as our rules govern, keeping in mind that the derivative of y with respect to x is written as $\frac{dy}{dx}$.

Inherent in what we do here is the Chain Rule. It is nice to *not* lose sight of that as we go.


A nasty, quarrelsome student might ask, "Can't we just solve for y and then differentiate?" To that I answer, "Ah, well, yes, ... but sometimes that's *not* possible or even harder than implicitly differentiating."

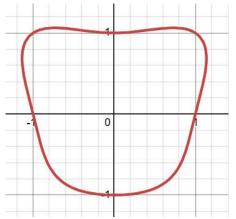

Let's jump right in with examples. We will go term by term. Again, recall that the derivative of y with respect to x is written as $\frac{dy}{dx}$. Always isolate $\frac{dy}{dx}$ to finish.

expl 1: Calculate $\frac{dy}{dx}$.


 $3x + 4v^3 = 7$

For the second term, we use the Chain Rule because y is a function in x.

expl 3: Calculate $\frac{dy}{dx}$. $e^{xy} = 2y$



expl 4: For the following implicitly defined relationship, determine the equation of the line tangent to the curve at the point (-1, 1).

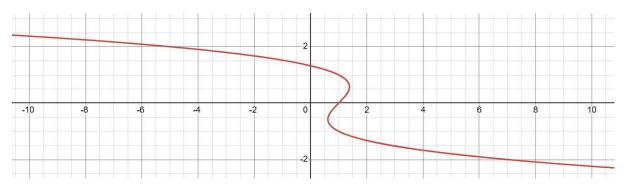
$$x^4 - x^2y + y^4 = 1$$

Here's a graph I made with the help of the good people at $\underline{\text{www.desmos.com}}$. Find the point (-1, 1) and draw in the tangent line.

How would you algebraically show that this point is on the curve?

First, find $\frac{dy}{dx}$ because that's the slope of the tangent line for any point (x, y) we are given.

Then what?


expl 5: Consider the relationship $x + y^3 - y = 1$. Determine which points on this curve have a vertical or horizontal tangent line.

First, find $\frac{dy}{dx}$ because that's the slope of the tangent line for any point (x, y) we are given.

Now, what does it mean for this tangent line to be vertical or horizontal, as far as slope is concerned? Give answers as ordered pairs in exact form.

You will end up in radical form. Do *not* round.

expl 5 exploration: Here we see the graph of $x + y^3 - y = 1$. (<u>www.desmos.com</u>) Estimate your points on the graph.

Higher-Order Implicit Differentiation:

Use the procedure to find and isolate $\frac{dy}{dx}$. Then take the derivative of that and you'll have $\frac{d^2y}{dx^2}$.

expl 6: Find
$$\frac{d^2y}{dx^2}$$
 of $2x^2 + y^2 = 4$.