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Calculus I  
Class notes 
Riemann Sums: Approximating Areas Under Curves (section 5.1) 

So, we know that  ( )f x   is the rate of change of a function shown as the slope of the tangent 

line at some  x-value. That was pretty cool but it gets even cooler when we investigate the 

graphical meaning of  ( )f x dx . 

For our first exploration, consider a car moving along 
a straight road at a velocity of  60 mph. This is a 
constant velocity so its graph is a horizontal line, isn’t 
it? Here’s a picture of the first two hours of the drive.  
 
How far does it travel in this time? (Distance would 

be ( ) ( )s t v t dt  .)  

 

 
Recall, we can label the distance traveled the car’s displacement. Now, and this is the truly 
mind-blowing part, draw in the right side of the rectangle this function makes with the axes and 
find the area of this rectangle.  

 

 

 

Do you think it is a coincidence that this area equals the total distance driven? Life is full of 
coincidences, after all. “No”, you say. You say, “Life is full of coincidences, but it is also full of 
beautiful math that explains at least some of those coincidences.” You would be right. Well 
done. Let’s get more creative with this velocity function.  

Let’s say our car’s velocity function is  2( )v t t  where  t  is the number of hours. Give yourself a 

quick graph but remember that we will only need the right side of the parabola. (Why?) 

 

 

 

 

 

Chapter 5 tells us more about 
integrals. It still amazes me how we 
see them in the graph of a function.   

How is this area 
related to the total 
distance driven?   

Label the  t-values 1, 2, 
and 3. Consider the 

distance driven in these 
first three hours.    
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How would we find the area under this curve for [0, 3]? It’s all curvy on top so it’s not so easy as 
before. However, we could approximate the area by using a series of rectangles.  

Here is my drawing of  2( ) , 0v t t t   with the three points 
at  t = 1, 2, and 3 marked. From those points, I drew and 
shaded rectangles. Calculate this shaded area.  
 
 
How well do these rectangles approximate the actual area?  
 
 
Did we overestimate or underestimate the actual area?   

 

 

 

Try this one. Notice how I chose to draw the rectangles on this second 
attempt. Since, we are going to  t = 3, there look to be only two 
rectangles. (The first rectangle technically has no height.) Find this area.  
 
 
How good is this approximation? Would you say that it overestimated 
or underestimated the actual area? 

 
 

We do this work by dividing the interval [0, 3] into three subintervals, [0, 1], [1, 2], and [2, 3]. 
When we used the right endpoint of each interval to draw the rectangles, we overestimated the 
actual area. When we used the left endpoints, we underestimated the area.  

 

Let’s cut the difference and center the rectangles on the intervals themselves. To find this area, 
you will need to find some  v(t)  values first.  

Complete the table on the far right and then find 
this area. You should see that it gives a value 
somewhere in the middle of the first two 
estimates.  
 
More importantly, look at the picture and decide if 
the estimate is a good one. Does it really look like 
it captured the area under the curve?  

 

t v(t) = t 2 
0.5 

 
 

1.5 
 

 

2.5 
 

 

 

This is called a 
regular partition of 

the interval [0, 3].     
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Our Old Friend Limit Lends a Hand:  
Imagine if we had used more rectangles. We could have pinpointed the area even better with 
more, skinnier rectangles. The more rectangles we used, the better our approximation would 
become.  

What if we had an infinite number of rectangles? You say we can’t do that? Okay, but we can 
imagine it, right?  
 
To find this area exactly, let  n  be the number of rectangles we subdivide the area into. We will 
take the limit, as n  , of the sum of these rectangles’ areas. This, we will see as we go 
through the chapter, is the exact area under the curve. For the example we started with, this 
would be the exact distance the car had traveled. Let’s do some work to get there.  

Regular Partitions: 

Consider a function  f (x)  that is continuous and non-
negative on the interval  [a, b]. We will label the region 
whose area we seek  R.  
 
Now, divide the interval  [a, b]  into  n  subintervals of 
equal length. To define these subintervals, we will assign 
intermediate  x-values from x0 (which is  a) to  xn  
(which is  b).  
 

 

They are equally spaced and we call the distance between two successive values our  
familiar x . Here’s a picture of that followed by the definition of a regular partition. 

 

 

Give yourself a moment 
to verify their formula 

for  x  and  xk.     
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Again, imagine the area we are after as subdivided into many rectangles. In every one of these 
rectangles, we will choose some  x-value to find its area.  

We will call that  x-value kx
. 

This is how the book shows it.  
 
Would you agree with how 
they calculate the area of this 
rectangle?  
 
Take a moment to understand 

why they are using  f ( kx
).  

 

 
Riemann Sums:  
Wikipedia.org tells me that Riemann Sums are named after the nineteenth century German 
mathematician Bernhard Riemann. One can only assume he was teased mercilessly for his 
name until he showed them all by becoming a great mathematician. Bet they got nothing named 
after them.  

 

 

This  kx
  could 

be any point.    
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Summation (Sigma) Notation:  
Writing the calculations for these areas is repetitive and hard on the hand. Mathematicians, being 
the lazy buggers they are, came up with shorthand notation. We will use the Greek capital letter 
 (sigma).  

If we want to write 1 + 2 + 3 + … + 10, we will abbreviate that as 
10

1k

k

 . The index  k  takes on 

every integer value from 1 through 10. This is an arbitrary symbol (a dummy variable) and you 
could use  n  or  m  as easily as  k. The summand is the name for the expression that follows the 
sigma (and is the thing you add again and again as the index changes from the lower limit to the 
upper limit). In this case, the summand is  k  but it could be any expression. We will play with 
this notation a bit but mainly use it for our Riemann Sums.  

expl 1: Write out the following in expanded form. Do not bother finding the sum.  
5

2

1k

k

  

 

 

 

 

 

expl 2: Use one of the rules above to rewrite the following. Then expand the form.  
3

1

5 k

k

x

  

 

expl 3: Use summation notation to rewrite the Riemann Sum given on the previous page.  

 

 

 

There are many 
rules; here are only 

sum of them.     



6 
 

You may also put these rules to work.  

 

Here’s some space so you can play with them.  

 

 

 

 

 

 

Again, the reason we study this is the Riemann Sum. So, here it is in summation notation. You 

will also see that we are given the formulas for  kx
. They differ depending on the type of 

Riemann Sum you are after.  

 

These formulas have 
been known and used 
for centuries. Those 
for higher exponents 

are complicated.      
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expl 4: We are interested in estimating the area under the curve  f (x)  shown below from  x = 0  
to  x = 9. We will do this by the method of Riemann Sums.  

Notice the points (x, f (x)) where x  is an integer are marked with big dots. For each one of these 
dots, draw a horizontal segment over to the vertical line directly to its left. These segments 
complete rectangles (width equals 1) formed by the positive  x-axis and the vertical lines drawn 
in the graph. Shade in these rectangles. Notice how this shaded area closely resembles the area 
under the curve.  

 

Estimate each  f (x)  value and record it on the table below. Round to the nearest quarter unit. 
Since the rectangles all have a width of 1, this value is also the area of the rectangle.  

Rectangle 1 2 3 4 5 6 7 8 9 

f (x) or 
Area 

         

 
What is the total area? Again, notice the area of the rectangles estimates the area under the curve 
of  f (x) [and above the  x-axis] from  x = 0  to  x = 9. 

 

 

 

 

We will assume that 
each little square of 
the graph represents 

one square unit (like a 
square inch). 
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expl 5: Let ( ) cosf x x  on 0,
2

 
  

. Use  n = 4  subintervals.  

a.) Sketch the function on the given interval twice. Use up the space provided.  

 

 

 

 

 

 

 

b.) Calculate  x   and the grid points  x0, x1, x2, … xn. Label them on your graphs above.  

 

 

 

 

 

 

 

c.) Illustrate the left and right Riemann Sums on your pictures. Label which is which. Also, tell 
which underestimates and which overestimates the area under the curve. You do not need to find 
these sums. 

 

 

 

 

 

Do you know why a 
Riemann Sum would give 
an underestimate versus 

an overestimate yet? 
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expl 6a: Approximate the displacement of the object whose velocity is given below. Do so on the 
interval  0 4t   by subdividing into  n = 4  subintervals. Use left endpoints. You may assume 
the units are meters per second.  

3 1 1

6 6 2

t
v t


    

 

 

 

 

 

 

 

Grid point  
t 

v(t)  Left endpoint 
t 

Area of 
rectangle 

    
 

    

 
 

    

 
 

    

 
 

    

 
 

    

      What is the total area? Include units.  

 

 

 

 

 

 

 

Form a graph to help 
visualize. Find  t  and the 
grid points. Complete the 

tables below to help organize. 

We can use the calculator for 
these repetitive calculations.  
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TI Calculator Instructions:  
1. Start on the home screen. Press the 2nd and then STAT buttons to get to the LIST command. 
Arrow over to MATH. Select the option 5: sum(. [This will be the sigma part of the expression.]  

2. Navigate back to the LIST command as before. This time arrow over to OPS. Select the 
option 5: seq(. [This will be how you tell it the lower and upper limits for  k.]  

3. You will enter the expression you want summed using  x, the variable  x  itself, the lower limit 
of the summation, and the upper limit of the summation, all separated by commas. Finish with 
two parentheses at the end and hit ENTER.  

 
expl 6b: Try this process out to find the summation from  
the previous page. Write it here in both sigma notation and  
what it looks like on the calculator.  

 

 

 

expl 7: Let ( )f x x  on  1, 3 . Use  n = 4  subintervals.  

a.) Sketch the function on the given 
interval. Calculate  x   and the grid 
points  x0, x1, x2, … xn. Label them on 
your graph.  
 

 

b.) Illustrate the midpoint Riemann Sum on your picture. Find the four values of  kx
 needed to 

calculate the Riemann Sum by hand. Start with   
4

1
k

k

f x x



  and find this sum using your 

values. The table will help you organize.  

kx
 f ( kx

) 

 
 

 

 
 

 

 
 

 

 
 

 

Newer calculators 
may have a 

different interface.  

Midpoint Riemann Sum:  

 1
2kx a k x      
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expl 8a: For the following function, use sigma notation to write out the left and right Riemann 
Sums. An interval and number of subintervals is given. Then use a calculator to find the sums.  

 3( ) 1; 0, 2 ; 50f x x n    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

expl 8b: Taking your sums into account, estimate the area 
under the curve of  f (x)  in the given interval. Sketch a 
quick picture of the region whose area we have estimated.  
 

 

 

 

 
In the sections to come, we will learn how to find this area exactly.  

Left Riemann Sum:  

 1kx a k x      

Right Riemann Sum: 

kx a k x     


