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Calculus I  
Class notes 
Riemann Sums: Definite Integrals (section 5.2) 

We now have the Riemann Sum that can help us estimate the area under a curve. Technically, 
the area we found was bound by the  x-axis, wasn’t it? We specifically kept to examples where 
the function was drawn above the  x-axis. In other words, our functions were non-negative. Here, 
we see what it looks like when they’re not.  

Take a look at this picture of  2( ) 1f x x   on the 
interval  [1, 3].  
 
Since these function values are negative, the formula 

 
1

n

k
k

f x x



  would necessarily sum up negative 

numbers and end up with a negative number.  
 
But area is not negative! Or, is it? 

 
 

The Riemann Sum being negative does not mean it’s useless. We just have to reimagine what it 
does mean. We are getting the negative of the area bounded by the function and the  x-axis. That 
could be useful. Here’s a definition to start making sense of this.  

 

Here’s a picture of a function which is both below and 
above the  x-axis.  
 
We will count area above as positive and area below as 
negative.  
 
The Riemann Sum will naturally produce those signs.  

 

We get back to integrals and see their 
connection to Riemann Sums. And, what about 

functions that dip below the  x-axis?  
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expl 1a: Consider  f (x) = 4 – 2x. Sketch the function on the interval  [0, 4].  

 

 

 

 

 

 

expl 1b: Approximate the net area bounded by the graph of  f  and the  x-axis using a midpoint 
Riemann Sum (by hand). Use  n = 4. Use the table below to help you organize.    
  

kx
 f ( kx

) = 4 – 2( kx
)  

 
 

 

 
 

 

 
 

 

 
 

 

 

 

expl 1c: Show which intervals of [0, 4] make positive and negative contributions to the net area.  

 

 

 

 

 

 

 

What does it 
look like the 
net area is?    

The area 
should not 

surprise you.    



3 
 

The Definite Integral:  

The Riemann Sum  
1

n

k
k

f x x



  approximates the net area. How could we find this area exactly? 

Imagine using more and more rectangles (making  n  bigger and bigger). These rectangles would 
better fill in the area that we are after. At some point, they would be so close as to be 
indistinguishable from the curved area. How do we do that? Well, limits, of course! 

We see that this net area is, in fact, equal to  
1

lim
n

k
n

k

f x x




 .  

 

We have been using Riemann Sums based on regular partitions but the truth is that the rectangles 
do not have to be of equal width. We define a general partition and a General Riemann Sum.  

 

If you want a left, right, or midpoint Riemann Sum, then choose  kx
  accordingly.  

Now, as  n  gets bigger and bigger, the widths of these rectangles would get smaller and smaller, 
wouldn’t they? We are going to say that these widths approach  0  as  n  approaches infinity.  

If we compare all of the rectangles’ widths, there would be one that is the biggest. Let’s define 
  as that maximum value for widths. And this   would approach  0  as  n  approaches infinity.  

We are ready…  

No longer are 
we saying 

"approximate".    

This describes 
a general 
partition.    

This is the 
same except 
that it allows 

for each width 
to be different.    
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The Definite Integral:

 

 

 

 

 
Indefinite Versus Definite Integrals: 
It is important to note that the indefinite integrals we saw earlier are very much related but are 
not considered to be areas. An indefinite integral is an antiderivative of a function. In other 
words, the integral of a function is another function whose derivative gives us the original 
function.  

On the other hand, a definite integral gives us this net area. We will see, in the next section, how 
the indefinite and definite integrals are related. And, wow, just wow. Seriously, just you wait… 

 

Definite Integral Notation: 
It does help to see why the notation is the way it is. The left 
and right sides of this equation are analogous.  
 
The sum on the right, as 0 , becomes a sum with an 

infinite number of terms, denoted by the integral sign   on 

the left. This was designed to look like an elongated S for 
sum. The limits of integration,  a  and  b, also match with   
k = 1  and  n  from the right.    

 
Recall that the  f (x)  part of the integral is called the integrand and that you should always think 

of the   and the  dx  as two pieces of the same symbol. This  dx  tells us that the independent 

variable is  x. (A moldering pile of bones, Gottfried Wilhelm Leibniz, invented this notation. 
Albeit, he was moldering less in 1675 when he introduced the notation.) 

So, the definite integral of a function from  a  
to  b  is the exact area bounded by the 
function and the  x-axis. However, we 

consider area below the  x-axis to be negative.   
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Evaluating Definite Integrals: 
You might have noticed the definition of definite integral used the term integrable. Most of the 
functions we encounter will be integrable.  

 

expl 2: For the integral below, do the 
following.  

 
2

2

0

2x dx  

a.) Sketch two graphs of the integrand on the 
interval of integration. Shade the areas 
bounded by the  x-axis.  
b.) Calculate   x  and the grid points  x0, x1, 
x2, … xn. Use  n = 4. Label them on your 
graphs.  

 

 

 

c.) Find and illustrate on your graphs both the left and right Riemann Sums. Also, tell which 
underestimates and which overestimates the area under the curve. Use the table below to help 
you organize.     

kx
 f ( kx

) = ( kx
)2 – 2 

 
 

 

 
 

 

 
 

 

 
 

 

  
 

 

 

 

The left RS uses the 
first four grid points. 

The right RS uses 
the last four.   
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Properties of Definite Integrals: 

Some of these are common sense. Like, what do you think 
4

2

4

x dx  is? Think about the area that 

this would find. You can draw some pictures to understand most of these. 

 

Here’s a picture for one of these gems. Guess which one! Fill in the labels I have blanked out.  

 

 

expl 3: You are given that  
4

1

( ) 8f x dx   and  
6

1

( ) 5f x dx  . Find the following. 

a.) 
4

1

3 ( )f x dx    b.) 
1

4

( )f x dx     c.) 
4

6

12 ( )f x dx  

 

There are more 
lovely pictures 

in the book.  

I like to write 
smaller limit 
on bottom.   
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expl 4: You are given that  
1

3

0

32 4x x dx   . Find  
1

3

0

10 5x x dx .  

 

 

 

 

 

 

 

 

 

expl 5: For the Riemann Sum given here, identify  f  and express the limit as a definite integral. 

 2

0
1

lim 7
n

k k
k

x x




    on the interval [–2, 2] 

 

 

 

 

 

 

 

 

 

 

 

 

 
0

1

( ) lim
b n

k k
ka

f x dx f x x




   

How are 3 2x x  

and  310 5x x  
related?  
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Integrals of Piecewise Functions:  
An exercise in the book gives us the following. 

Suppose  f  is continuous on the intervals  [a, p]  and  [p, b]  where  a < p < b  with a finite jump 

at  p. It is true that ( ) ( ) ( )
pb b

a a p

f x dx f x dx f x dx    .  

expl 6: Use geometry to find  
6

1

( )f x dx  for the function 
2 , 1 4

( )
10 2 , 4 6

x x
f x

x x

 
    

.  

 

 

 

 

 

 

Draw a nice big picture. Remember we seek 
the area bounded by  f  and the  x-axis. You 

will see four geometric shapes form this area.  

Take areas 
below the  x-axis 
to be negative.   


