Differentiation Rules Worksheet

Fill in the second column with the general rule for the derivative of $h(x)$. Then make up a simple example of $h(x)$ and find its derivative for the third column.

Function $\boldsymbol{h (x)}$	Derivative $\boldsymbol{h}^{\prime}(\boldsymbol{x})$	Simple example		
$h(x)=x^{r}$ where r is a real number				
$h(x)=k f(x)$ where k is a real number and $f(x)$ is a function of x				
$h(x)=f(x)+g(x)$ where f and g are functions of x				
$h(x)=(g(x))^{r}$ where r is a real number and $g(x)$ is a function of x				
$h(x)=e^{k x}$ where k is a real number				
$h(x)=f(x) g(x)$ where f and g are functions of x				
$h(x)=\frac{f(x)}{g(x)}$ where f and g are functions				
of x			\quad	$h(x)=f(g(x))$ where f and g are
:---				
functions of x				

Function $\boldsymbol{h}(\boldsymbol{x})$	Derivative \boldsymbol{h} ' (\boldsymbol{x})	Simple example
$h(x)=e^{g(x)}$ where g is a function of x		
$h(x)=\ln x$		
$h(x)=\ln (g(x))$		
$A=P e^{r t}$ (continuously compounded formula)		

